
The Fundamentals
of Kubernetes
From managing cluster capacity to container health to
storage volumes, build your foundational knowledge of
Kubernetes with these five fundamentals

The Fundamentals of Kubernetes

Table of Contents
Introduction� 03

Chapter 1: How to Manage Cluster Capacity with Requests and Limits� 04

Chapter 2: How to Use Health Checks� 08

Chapter 3: How to Use Kubernetes Secrets� 13

Chapter 4: How to Organize Clusters� 20

Chapter 5: Working With Kubernetes Volumes� 27

01

The Fundamentals of Kubernetes

01

A recent survey from Cloud Native Computing Foundation (CNCF)

found that 83% of respondents are using Kubernetes in produc-

tion, up from 58% in 2018. When it comes to automating the

deployment, scaling, and management of containerized applica-

tions, teams are clearly finding significant value in Kubernetes.

But that doesn’t mean the technology is simple to comprehend.

As teams move to adopt Kubernetes, they may find that the sheer

breadth of the platform can be overwhelming.

The five chapters in this ebook explore intro-level Kubernetes

fundamentals—including managing cluster capacity, using health

checks, organizing clusters, and beyond. If you’re a Kubernetes

novice, this information is essential, but we suspect even some

pros will find value in reviewing these basic elements for success-

ful Kubernetes management.

Introduction

The Fundamentals of Kubernetes

02

Chapter 1: How to Manage Cluster
Capacity with Requests and Limits

While Kubernetes manages the nodes in your cluster, you have

to first define the resource requirements for your applications.

Understanding how Kubernetes manages resources, especially

during peak times, is important to keep your containers running

smoothly.

This chapter looks at how Kubernetes manages CPU and memory

using requests and limits.

How requests and limits work

Every node in a Kubernetes cluster has an allocated amount of

memory (RAM) and computational power (CPU) that can be used

to run containers.

Kubernetes defines a logical grouping of one or more containers

into Pods. Pods, in turn, can be deployed and managed on top

of the nodes. When you create a Pod, you normally specify the

storage and networking that containers share within that Pod.

The Kubernetes scheduler will then look for nodes that have the

resources required to run the Pod.

To help the scheduler, you can specify a lower and upper RAM and

CPU limits for each container using requests and limits. These two

keywords enable you to specify the following:

•	 By specifying a request on a container, you are setting the

minimum amount of RAM or CPU required for that container.

Kubernetes will roll all container requests into a total Pod

request. The scheduler will use this total request to ensure the

Pod can be deployed on a node with enough resources.

•	 By specifying a limit on a container, you are setting the

maximum amount of RAM or CPU that the container can

consume. Kubernetes translates the limits to the container

service (Docker, for instance) that enforces the limit. If a

container exceeds its memory limit, it may be terminated

and restarted, if possible. CPU limits are less strict and can

generally be exceeded for extended periods of time.

Let’s see how requests and limits are used.

Setting CPU requests and limits

Requests and limits on CPU are measured in CPU units. In Kuber-

netes, a single CPU unit equals a virtual CPU (vCPU) or core for

cloud providers, or a single thread on bare metal processors.

Under certain circumstances, one full CPU unit can still be con-

sidered a lot of resources for a container, particularly in regard

to microservices. This is why Kubernetes supports CPU fractions.

https://blog.newrelic.com/engineering/what-is-kubernetes/

The Fundamentals of Kubernetes

03

While you can enter fractions of the CPU as decimals—for exam-

ple, 0.5 of a CPU—Kubernetes uses the “millicpu” notation, where

1,000 millicpu (or 1,000m) equals 1 CPU unit.

When you submit a request for a CPU unit, or a fraction of it, the

Kubernetes scheduler will use this value to find a node within a

cluster that the Pod can run on. For instance, if a Pod contains a

single container with a CPU request of 1 CPU, the scheduler will

ensure the node it places this Pod on has 1 CPU resource free. For

a Docker container, Kubernetes uses the CPU share constraint to

proportion the CPU.

If you specify a limit, Kubernetes will try to set the container's

upper CPU usage limit. As mentioned earlier, this is not a hard

limit, and a container may or may not exceed this limit depend-

ing on the containerization technology. For a Docker container,

Kubernetes uses the CPU period constraint to set the upper

bounds of CPU usage. This allows Docker to restrict the percent-

age of runtime over 100 milliseconds the container can use.

Below is a simple example of a Pod configuration YAML file with a

CPU request of 0.5 units and a CPU limit of 1.5 units.

apiVersion: v1

kind: Pod

metadata:

 name: cpu-request-limit-example

spec:

 containers:

 - name: cpu-request-limit-container

 image: images.example/app-image

 resources:

 requests:

 cpu: "500m"

 limits:

 cpu: "1500m"

This configuration defines a single container called “cpu-re-

quest-limit-container” with the image limits specified in the

resources section. In that section, you specify your requests and

limits. In this case, you are requesting 500 millicpu (0.5 or 50% of

a CPU unit) and limiting the container to 1500 millicpu (1.5 or 150%

of a CPU unit).

Setting memory requests and limits

Memory requests and limits are measured in bytes, with some

standard short codes to specify larger amounts, such as kilobytes

(K) or 1,000 bytes, megabytes (M) or 1,000,000 bytes, and giga-

bytes (G) or 1,000,000,000 bytes. There are also power-of-two

equivalents for these shortcuts. For example, Ki (1,024 bytes), Mi,

and Gi. Unlike CPU units, there are no fractions for memory as the

smallest unit is a byte.

The Kubernetes scheduler uses memory requests to find a node

within your cluster that has enough memory for the Pod to run

on. Memory limits work in a similar way to CPU limits, except they

https://docs.docker.com/engine/reference/run/#cpu-share-constraint
https://docs.docker.com/engine/reference/run/#cpu-period-constraint

The Fundamentals of Kubernetes

04

are enforced more strictly. If a container exceeds a memory limit,

it might be terminated and potentially restarted with an “out of

memory” error.

The simple example of a Pod configuration YAML file below con-

tains a memory request of 256 megabytes and a memory limit of

512 megabytes.

apiVersion: v1

kind: Pod

metadata:

 name: memory-request-limit-example

spec:

 containers:

 - name: memory-request-limit-container

 image: images.example/app-image

 resources:

 requests:

 memory: "256M"

 limits:

 memory: "512M"

This configuration defines a single container called “memo-

ry-request-limit-container” with the image limits specified in the

resources section. You have specified the memory request of

256M, and limited the container to 512M.

Setting limits via namespaces

If you have several developers, or teams of developers, working

within the same large Kubernetes cluster, a good practice is to

set common resource requirements to ensure resources are not

consumed inadvertently. With Kubernetes, you can define differ-

ent namespaces for teams and use resource quotas to enforce

quotas on these namespaces.

For instance, you may have a Kubernetes cluster that has 64 CPU

units and 256 gigabytes of RAM spread over eight nodes. You

might create three namespaces—one for each of your develop-

ment teams—with the resource quota of 10 CPU units and 80

Gigabytes of memory. This would allow each development team

to create any number of Pods up to that limit, with some CPU and

memory left in reserve.

For more information on specifying resource quotas for name-

spaces, refer to the Resource Quotas section of the Kubernetes

documentation.

The importance of monitoring cluster capacity

Setting requests and limits on both containers and namespaces

can go a long way to ensure your Kubernetes cluster does not run

out of resources. Monitoring, however, still plays an important

role in maintaining the health of individual services, as well as the

overall health of your cluster.

https://kubernetes.io/docs/concepts/policy/resource-quotas/

The Fundamentals of Kubernetes

05

When you have large clusters with many services running within

Kubernetes Pods, health and error monitoring can be difficult.

Observability tools, such as New Relic, offer an easy way to mon-

itor your Kubernetes cluster and the services running within it. It

helps you make sure that requests and limits you are setting at

the container and across the cluster are appropriate.

Having a good understanding of how Kubernetes handles CPU

and memory resources, as well as enabling configuration to man-

age these resources, is critical to ensure your Kubernetes clusters

have enough capacity at all times. As we’ve seen, setting CPU and

memory requests and limits is easy—and now you know how to

do it. By adding a layer of monitoring, you will go a long way to

ensuring that Pods are not fighting for resources on your cluster.

https://newrelic.com/platform
https://newrelic.com/platform/kubernetes/monitoring-guide
https://newrelic.com/platform/kubernetes/monitoring-guide

The Fundamentals of Kubernetes

06

Chapter 2: How to Use Health Checks

To manage containers effectively, Kubernetes needs a way to

check container health to ensure that they are working correctly

and receiving traffic. Kubernetes uses health checks—also known

as probes—to determine if instances of your app are running and

responsive.

This chapter discusses the different probe types and the various

ways to use them.

Why probes are important

Distributed systems can be hard to manage. Because the sepa-

rate components work independently, each part will keep running

even after other components have failed. At some point, an appli-

cation might crash. Or an application might be still in the initial-

ization stage and not yet ready to receive and process requests.

You can only assert the system's health if all of its components

are working. Using probes, you can determine whether a con-

tainer is dead or alive, and decide if Kubernetes should temporar-

ily prevent other containers from accessing it. Kubernetes verifies

individual containers’ health to determine the overall Pod health.

Types of probes

As you deploy and operate distributed applications, containers

are created, started, run, and terminated. To check a container's

health in the different stages of its life cycle, Kubernetes uses dif-

ferent types of probes:

Liveness probes allow Kubernetes to check if your app is alive.

The kubelet agent that runs on each node uses the liveness

probes to ensure that the containers are running as expected. If

a container app is no longer serving requests, kubelet will inter-

vene and restart the container.

For example, if an application is not responding and cannot make

progress because of a deadlock, the liveness probe detects that it

is faulty. Kubelet then terminates and restarts the container. Even

if the application carries defects that cause further deadlocks, the

restart will increase the container's availability. It also gives your

developers time to identify the defects and resolve them later.

Readiness probes run during the entire life cycle of the container.

Kubernetes uses this probe to know when the container is ready

The Fundamentals of Kubernetes

07

to start accepting traffic. If a readiness probe fails, Kubernetes will

stop routing traffic to the Pod until the probe passes again.

For example, a container may need to perform initialization tasks,

including unzipping and indexing files and populating database

tables. Until the startup process is completed, the container will

not be able to receive or serve traffic. During this time, the read-

iness probe will fail, so Kubernetes will route requests to other

containers.

A Pod is considered ready when all of its containers are ready.

That helps Kubernetes control which Pods are used as backends

for services. If it’s not ready, a Pod is removed from service load

balancers.

Startup probes are used to determine when a container applica-

tion has been initialized successfully. If a startup probe fails, the

Pod is restarted.

When Pod containers take too long to become ready, readiness

probes might fail repeatedly. In this case, containers risk being

terminated by kubelet before they are up and running. This is

where the startup probe comes to the rescue.

The startup probe forces liveness and readiness checks to wait

until it succeeds, so that the application startup is not com-

promised. That is especially beneficial for slow-starting legacy

applications.

Creating probes

To create health check probes, you must issue requests against

a container. There are three ways of implementing Kubernetes

liveness, readiness, and startup probes:

1.	 Sending an HTTP request

2.	 Running a command

3.	 Opening a TCP socket

HTTP REQUESTS

An HTTP request is a common and straightforward mechanism

for creating a liveness probe. To expose an HTTP endpoint, you

can implement any lightweight HTTP server in your container.

A Kubernetes probe will perform an HTTP GET request against

your endpoint at the container's IP to verify whether your ser-

vice is alive. If your endpoint returns a success code, kubelet will

consider the container alive and healthy. Otherwise, kubelet will

terminate and restart the container.

Suppose you have a container based on an image named k8s.gcr.

io/liveness. In that case, if you define a liveness probe that uses

an HTTP GET request, your YAML configuration file would look

similar to this snippet:

apiVersion: v1

kind: Pod

metadata:

The Fundamentals of Kubernetes

08

 labels:

 test: liveness

 name: liveness-http

spec:

 containers:

 - name: liveness

 image: k8s.gcr.io/liveness

 args:

 - /server

 livenessProbe:

 httpGet:

 path: /healthz

 port: 8080

 httpHeaders:

 - name: Custom-Header

 value: Awesome

 initialDelaySeconds: 3

 periodSeconds: 3

The configuration defines a single-container Pod with initialDelay-

Seconds and periodSeconds properties that tell kubelet to exe-

cute a liveness probe every three seconds then wait three seconds

before performing the first probe. Kubelet will check whether the

container is alive and healthy by sending requests to the /healthz

path on 8080 port and expect a success result code.

COMMANDS

When the HTTP requests are not suitable, you can use command

probes.

Once you have a command probe configured, kubelet executes

the cat /tmp/healthy command in the target container. Kubelet

considers your container alive and healthy if the command

succeeds. Otherwise, Kubernetes terminates and restarts the

container.

This is how your YAML configuration would look for a new Pod

that runs a container based on the k8s.gcr.io/busybox image:

apiVersion: v1

kind: Pod

metadata:

 labels:

 test: liveness

 name: liveness-exec

spec:

 containers:

 - name: liveness

 image: k8s.gcr.io/busybox

 args:

 - /bin/sh

 - -c

The Fundamentals of Kubernetes

09

 - touch /tmp/healthy; sleep 30; rm -rf /tmp/

healthy; sleep 600

 livenessProbe:

 exec:

 command:

 - cat

 - /tmp/healthy

 initialDelaySeconds: 5

 periodSeconds: 5

The above configuration defines a single container Pod with the

initialDelaySeconds and the periodSeconds keys tell kubelet

to perform a liveness probe every five seconds then wait five sec-

onds before the first probe is completed.

Kubelet will run the cat /tmp/healthy command in the con-

tainer to execute a probe.

TCP CONNECTIONS

When a TCP socket probe is defined, Kubernetes tries to open a

TCP connection on your container's specified port. If Kubernetes

succeeds, the container is considered healthy. TCP probes are

helpful when HTTP or command probes are not adequate. Sce-

narios in which containers can benefit from TCP probes include

gRPC and FTP services, where the TCP protocol infrastructure

already exists.

With the following configuration, kubelet will try to open a socket

to your container on the specified port.

apiVersion: v1

kind: Pod

metadata:

 name: goproxy

 labels:

 app: goproxy

spec:

 containers:

 - name: goproxy

 image: k8s.gcr.io/goproxy:0.1

 ports:

 - containerPort: 8080

 readinessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 5

 periodSeconds: 10

 livenessProbe:

 tcpSocket:

 port: 8080

 initialDelaySeconds: 15

 periodSeconds: 20

The Fundamentals of Kubernetes

10

The above configuration is similar to the HTTP check. It defines

a readiness and a liveness probe. When the container starts,

kubelet will wait five seconds to send the first readiness probe.

After that, kubelet will keep checking the container readiness

every 10 seconds.

Monitoring Kubernetes health

Probes tell Kubernetes whether your containers are healthy, but

they don't tell you anything.

When you have many services running in Kubernetes Pods

deployed across many nodes, health and error monitoring can

be difficult.

As a developer or a DevOps specialist working with the Kuberne-

tes platform, you might find New Relic an excellent tool for check-

ing Kubernetes' health, gathering insights, and troubleshooting

container issues.

Health checks via probes are essential to ensure that your con-

tainers are good citizens in a cluster. Kubernetes uses liveness,

readiness, and startup probes to decide when a container needs

to be restarted, or a Pod needs to be removed from service. That

helps you keep your distributed system services reliable and

available.

The Fundamentals of Kubernetes

11

Chapter 3: How to Use
Kubernetes Secrets

Containerized applications running in Kubernetes frequently

need access to external resources that often require secrets,

passwords, keys, or tokens to gain access. Kubernetes Secrets lets

you securely store these items, removing the need to store them

in Pod definitions or container images.

This chapter addresses various ways to create and use secrets in

Kubernetes, with an aim to help you select the best approach for

your environment.

Creating Kubernetes Secrets

Kubernetes Secrets offers three methods to create and store

secrets:

•	 Via the command line

•	 In a configuration file

•	 With a generator

Let’s take a look at creating some secrets with these methods.

Creating Kubernetes Secrets
from the command line

You can create a secret via the Kubernetes administrator com-

mand line tool, kubectl. This tool allows you to use files or pass

in literal strings from your local machine, package them into

secrets, and create objects on the cluster server using an API. It’s

important to note that secret objects must be in the form of a

DNS subdomain name.

For username and password secrets, use this command line

pattern:

kubectl create secret generic <secret-object-name>

<flags>

For secrets using Transport Layer Security (TLS) from a given pub-

lic/private key pair, use this command line pattern:

kubectl create secret tls <secret-object-name>

--cert=<cert-path> --key=<key-file-path>

https://kubernetes.io/docs/concepts/overview/working-with-objects/names/#dns-subdomain-names

The Fundamentals of Kubernetes

12

You can also create a generic secret using a username and pass-

word combination for a database. This example applies the literal

flag to specify the username and password at the command

prompt:

kubectl create secret generic sample

-db-secret --from-literal=username=admin

--from-literal=password=’7f3,F9D^LJz37]!W’

The command creates a new secret called sample-db-secret, with

a username value of admin and a password value of 7f3,F9D^L-

Jz37]!W. It is worth noting that strong, complex passwords often

have characters that need to be escaped. To avoid this, you can

put all your usernames and passwords in text files and use the

following flags:

kubectl create secret generic sample-db-secret

--from-file=username.txt --from-file=password.txt

This command drops the username and password keys as it

provides the name of a file containing this information. You can

add this back into the --from-file switch the same way as the

--from-literal switch if the key is different from the file name.

kubectl create secret generic sample-db-secret

--from-file=username=123.txt --from-file=pass-

word=xyz.txt

Setting Kubernetes Secrets
in a configuration file

Another option is to create your secret using a JSON or YAML con-

figuration file. A secret created in a configuration file has two data

maps: data and stringData. The former requires your values to be

base64-encoded, whereas the latter allows you to provide values

as unencoded strings.

The following template is used for secrets in YAML files:

apiVersion: v1

kind: Secret

metadata:

 name: <secret name>

type: Opaque

data:

 <key>: <base64 Value>

stringData:

 <key>: <string value>

You apply the template using the kubectl apply -f ./<file-

name>.yaml command. As an example, here is a YAML file for an

application that requires a number of secret values:

apiVersion: v1

kind: Secret

metadata:

The Fundamentals of Kubernetes

13

 name: my-example-app

type: Opaque

data:

 app-user: YWRtaW5pc3RyYXRvcg==

 app-password: cGFzc3dvcmQ=

stringData:

 Dbconnection:

Server=tcp:myserver.database.net,1433;Database=myD-

B;User ID=mylogin@myserver;Password=myPass-

word;Trusted_Connection=False;Encrypt=True;

 config.yaml: |-

 LogLevel: Warning

 API_TOKEN: NcNIMcMYMAMg.MGwjPnPfEBgqMl8Q

 API_URI: https://www.myapp.com/api

The above YAML file contains a number of values, including:

•	 The secret name (my-example-app)

•	 An app-user (“administrator,” base64-encoded)

•	 An app-pasword (“password,” base64-encoded)

•	 A dbconnection string

•	 The config.yaml file with data

This is a good way for packaging many secrets and potentially

sensitive configuration information into a single configuration file.

Creating Kubernetes Secrets with a generator

The third option for creating secrets is to use Kustomize, a stand-

alone tool for customizing Kubernetes objects using a configura-

tion file called kustomization.yaml.

Kustomize allows you to generate secrets in a fashion similar to

the command line by specifying secrets in files (with a key/value

pair on each line), or as literals within the configuration file.

For secrets, the following structure is used within a kustomiza-

tion.yaml file:

secretGenerator:

 name: <secret-name>

 files:

 <filename>

 literals:

 <key>=<value>

When you have created the kustomization.yaml file and included

all the linked files in a directory, you can use the kubectl kustom-

ize <directory> command, then apply the configuration using the

kubectl apply -k <directory> command.

The following example kustomization.yaml file creates a secret

with two literal key/values (API_TOKEN and API_URI), as well as a

config.yaml file:

The Fundamentals of Kubernetes

14

secretGenerator:

 name: example-app-secrets

 files:

 passwords.txt

 literals:

 API_TOKEN: NcNIMcMYMAMg.MGwjPnPfEBgqMl8Q

 API_URI: https://www.myapp.com/api

The config.yaml file referenced in this example could be the con-

fig file for an application, for instance.

Which method for creating
Kubernetes Secrets is the best?

Each of the methods we’ve discussed is “the best” under specific

circumstances.

The command line is most useful when you have one or two

secrets you want to add to a Pod—for instance a username and

password—and you have them in a local file or want to pass them

in as literals.

Configuration files are great when handling a handful of secrets

that you want to include in a Pod all at one time.

The Kustomize configuration file is the preferred option when

you have one or more configuration files and secrets you want to

deploy to multiple Pods.

Once you have created your secrets, you can access them in two

main ways:

•	 Via files (volume-mounted)

•	 Via environment variables

The first option is similar to accessing configuration files as part

of the application process. The second option loads the secrets as

environment variables for the application to access. We are going

to explore both methods.

Accessing volume-mounted
Kubernetes secrets

To access secrets loaded in a volume, first you need to add the

secret to the Pod under spec[].[]volumes[].secret.secret-

Name. You then add a volume to each container under spec[].

containers[].volumeMounts, where the name of the volume

is the same as that of the secret, and where readOnly is set to

“true”.

There are also a number of additional options you can specify.

Let’s have a look at an example Pod with a single container:

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

The Fundamentals of Kubernetes

15

 containers:

 - name: myapp

 image: ubuntu

 volumeMounts:

 - name: secrets

 mountPath: "/etc/secrets”

 readOnly: true

volumes:

 - name: secrets

 secret:

 secretName: mysecret

 defaultMode: 0400

 items:

 - key: username

 path: my-username

This configuration file specifies a single Pod (mypod) with a single

container (myapp). In the volumes section for the Pod, you have a

volume named secrets, which is shared by all containers. This vol-

ume is of type secret, and it loads the secret called mysecret. It

loads the volume using the Unix file permissions 0400, which gives

read access to the owner (root), and no access to other users.

The secret also contains the items list, which casts only spe-

cific secret keys (in this case, username) and an appended path

(my-username). In your container (myapp), you map the volume in

volumeMounts (name is secrets) to the mountPath as read only.

Because you’re casting the username to my-username, the direc-

tory /etc/secrets in the container will look something like this:

lrwxrwxrwx 1 root root 2 September 20 19:18 my-us-

ername -> ..data/username

Because you’re casting a single value and changing the path, the

key has changed. If you follow symlink, you will see that the per-

missions are set correctly:

-r-------- 1 root root 2 September 20 19:18

username

All files that reside on the secret volume will contain the base64-de-

coded values of the secrets.

The advantage of loading your secrets into a volume is that, when

the secrets are updated or modified, the volume is eventually

updated as well, allowing your applications to re-read the secrets.

It also makes parsing secret files (such as sensitive configuration

files), as well as referencing multiple secrets, a lot easier.

Accessing Kubernetes Secrets
as environment variables

You can project your secrets into a container using environment

variables. To do this, you add an environment variable for every

The Fundamentals of Kubernetes

16

secret key you wish to add using env[].valueFrom.secretKey

Ref. Let’s have a look at an example Pod specification:

apiVersion: v1

kind: Pod

metadata:

 name: mypod

spec:

 containers:

 - name: myapp

 image: ubuntu

 env:

 - name: USERNAME

 valueFrom:

 secretKeyRef:

 name: mysecret

 key: username

 - name: PASSWORD

 valueFrom:

 secretKeyRef:

 name: mysecret

 key: password

This configuration file passes two keys (username and password)

from the mysecret secret to the container as environment vari-

ables. These values are the base64-decoded values of the secrets.

If you logged into the container and ran the echo $USERNAME com-

mand, you would get the decoded value of the username secret

(for example, “admin”).

One of the biggest advantages of casting secrets this way is that

you can be very specific with the secret value. Besides, for some

applications, reading environment variables is easier than parsing

configuration files.

Alternatives to Kubernetes Secrets

While secret management in a Kubernetes cluster is relatively sim-

ple, fairly secure, and can meet most requirements, it does have

some downsides. In particular, secrets use namespaces such as

Pods, so if secrets and Pods are in the same namespace, all Pods

can read the secrets.

The other major downside is that keys are not rotated automati-

cally. You need to manually rotate secrets.

To address these issues and provide a more centralized secret

management, you can use an alternative configuration, such as:

•	 Integrating a cloud vendor secrets management tool, such as

Hashicorp Vault or AWS Secrets Manager. These tools typically

use Kubernetes service accounts to grant access to the vault

for secrets and mutating webhooks to mount the secrets into

the Pod.

•	 Integrating a cloud vendor Identity and Access Management

(IAM) tool, such as AWS Identity and Access Manager. This type

https://www.hashicorp.com/products/vault/
https://aws.amazon.com/secrets-manager/

The Fundamentals of Kubernetes

17

of integration uses a method similar to OpenID Connect for

web applications, which allows Kubernetes to utilize tokens

from a Secure Token Service.

•	 Running a third-party secrets manager, such as Conjur loaded

into Pods as a sidecar.

Secure storage of secrets is critical to running containers in Kuber-

netes because almost all applications require access to external

resources—databases, services, and so on. Using Kubernetes

Secrets allows you to manage sensitive application information

across your cluster, minimizing the risks of maintaining secrets in

a non-centralized fashion.

https://www.conjur.org/

The Fundamentals of Kubernetes

18

Chapter 4: How to Organize Clusters

Kubernetes was designed to scale. A team can start a small cluster

and progressively expand its installation. After a while, the cluster

may be running dozens of Pods and hundreds of containers, or

even more.

However, without organization, the number of deployed services

and objects can quickly get out of control, leading to performance,

security, and other issues.

This chapter examines three key tools you can use to help keep

your Kubernetes cluster organized: namespaces, labels, and

annotations.

How namespaces work

By default, Kubernetes provides just one workable namespace

on top of a physical cluster in which you create all Kubernetes

objects. Eventually, though, your project is likely to grow to a point

where a single namespace will become a limitation.

Luckily, you can think of a namespace as a virtual cluster, and

Kubernetes supports multiple virtual clusters. Configuring mul-

tiple namespaces creates a sophisticated façade, freeing your

teams from working with a single namespace and improving man-

ageability, security, and performance.

Different companies will adopt different namespace strategies,

depending on factors such as team size, structure, and the com-

plexity of their projects. A small team working with a few micros-

ervices can easily deploy all services into the default namespace.

But for a rapidly growing company, with far more services, a sin-

gle namespace could make it hard to coordinate the team's work.

In this case, the company could create sub-teams, with a separate

namespace for each.

In larger companies, too, teams may be widely dispersed, often

working on projects that other teams aren't aware of, making it

hard to keep up with frequent changes. Third-party companies

might also contribute to the platform, further increasing com-

plexity. Coordinating so many resources is an administrative

challenge, and for developers it becomes impossible to run the

entire stack on the local machine. In addition to technologies such

as service mesh and multi-cloud continuous delivery, multiple

namespaces are essential to managing large-scale scenarios.

https://istio.io/latest/docs/concepts/what-is-istio/#what-is-a-service-mesh
https://spinnaker.io/

The Fundamentals of Kubernetes

19

The Fundamentals of Kubernetes

When different teams deploy projects to the same namespace,

they risk affecting one another's work. By providing isolation and

team-based access security, separate namespaces help ensure

teams work on their own without disrupting others. You can also

set a resource quota per namespace, so that a resource-hungry

application doesn't exhaust the cluster capacity, impacting other

teams’ resources.

Using namespaces

When you create a cluster, Kubernetes provides three name-

spaces out of the box. To list the namespaces that come with the

cluster, run the following command:

$kubectl get namespaces

NAME STATUS AGE

default ACTIVE 2d

kube-system ACTIVE 2d

kube-public ACTIVE 2d

The kube-system namespace is reserved for the Kubernetes

engine and is not meant for your use. The kube-public name-

space is where public access data is stored, such as cluster

information.

The default namespace is where you create apps and services.

Whenever you create a component and don't specify a name-

space, Kubernetes creates it in the default namespace. But using

the default namespace is suitable only when you're working on

small systems.

You can create a Kubernetes namespace with a single kubectl

command:

kubectl create namespace test

Alternatively, you can create namespaces with a YAML configura-

tion file, which might be preferable if you want to leave a history

in your configuration file repository of the objects that have been

created in a cluster. The following demo.yaml file shows how to

create a namespace with a configuration file:

kind: Namespace

apiVersion: v1

metadata:

 name: demo

 labels:

 name: demo

kubectl apply -f demo.yaml

Imagine having three projects—sales, billing, and shipping. You

wouldn’t want to deploy all of them into a single default name-

space, for the reasons presented earlier, so you’d start by creating

one namespace per project.

The problem is, each project has its own life cycle and you don't

want to mix development and production resources. So, as your

The Fundamentals of Kubernetes

20

projects get more complicated, your cluster needs a more sophis-

ticated namespace solution. You could further split your cluster

into development, staging, and production environments:

kind: Namespace

apiVersion: v1

metadata:

 name: dev

 labels:

 name: dev

kubectl apply -f dev.yaml

kind: Namespace

apiVersion: v1

metadata:

 name: staging

 labels:

 name: staging

kubectl apply -f staging.yaml

kind: Namespace

apiVersion: v1

metadata:

 name: prod

 labels:

 name: prod

kubectl apply -f prod.yaml

Here's a list of potential namespaces you might employ, depend-

ing on the needs of your projects:

•	 sales-dev

•	 sales-staging

•	 sales-prod

•	 billing-dev

•	 billing-staging

•	 billing-prod

•	 shipping-dev

•	 shipping-staging

•	 shipping-prod

There are two ways to explicitly tell Kubernetes in which name-

space you want to create your resources.

You can specify the namespace flag when creating the resource

with the kubectl apply command:

kubectl apply -f pod.yaml --namespace=demo

You can also modify the YAML configuration file metadata to

include the destination namespace attribute:

apiVersion: v1

kind: Pod

metadata:

 name: testpod

 namespace: demo

 labels:

 name: testpod

The Fundamentals of Kubernetes

21

spec:

 containers:

 - name: testpod

 image: nginx

If you predefine the namespace in the YAML declaration, the

resource will always be created in that namespace. If you try to

run the kubectl apply command with the namespace flag to set

a different namespace for this resource, the command will fail.

Using labels

As the number of objects in your cluster grows, it can be hard to

find and organize them. The increased complexity of the projects

means their multidimensional components may cross boundar-

ies and challenge rigid cluster structures. Labels let you attach

meaningful and relevant metadata to cluster objects so they can

be categorized, found, and operated on in bulk.

Labels are key/value structures assigned to objects. An object can

be assigned one or more label pairs or no label at all. Labels can

be useful for:

•	 Determining whether a Pod is part of a production or a canary

deployment

•	 Differentiating between stable and alpha releases

•	 Specifying to which layer (e.g., UI, business logic, database) an

object belongs

•	 Identifying whether a Pod is frontend or backend

•	 Specifying an object’s release version (e.g., V1.0, V2.0, V2.1)

For example, the following configuration file defines a Pod that

has two labels: layer: interface and version: stable.

apiVersion: v1

kind: Pod

metadata:

 name: app-gateway

 labels:

 layer: interface

 version: stable

Once the labels are in place, you can use label selectors to select

Kubernetes objects according to criteria you define.

Let's say you have some Pods in a cluster and they’ve been

assigned labels. The following command will get you all Pods and

their labels:

kubectl get pods --show-labels

NAME READY STATUS RESTARTS AGE LABELS

app-gateway 1/1 Running 0 1m

layer=interface,version=stable

micro-svc1 1/1 Running 0 1m

layer=business,version=stable

The Fundamentals of Kubernetes

22

micro-svc2 1/1 Running 0 1m

layer=business,version=alpha

Kubernetes lets you use label selectors to run the same kubectl

get pods command and retrieve only Pods with the specified

labels. The following -L selector allows you to display only the

layer label:

kubectl get pods -L=layer

NAME READY STATUS RESTARTS AGE LABELS

app-gateway 1/1 Running 0 1m interface

micro-svc1 1/1 Running 0 1m business

micro-svc2 1/1 Running 0 1m business

If you want to filter the results and retrieve just the interface pods,

you can use the -l and specify this condition:

kubectl get pods -l=layer=interface --show-labels

NAME READY STATUS RESTARTS AGE LABELS

app-gateway 1/1 Running 0 1m

layer=interface,version=stable

For more on labels and label selectors, refer to the Kubernetes

Labels and Selectors page.

Using annotations

Annotations are similar to labels. They’re also structured as key/

value pairs, but unlike labels, they’re not intended to be used in

searches.

So why should you bother to use annotations, when you can use

labels?

Imagine having to organize a warehouse where boxes are stored.

These boxes have small labels attached outside that include

important data to help you identify, group, and arrange them.

Now imagine that each of these boxes contains information.

Think of these contents as annotations that you can retrieve when

you open the box, but that you don't need to be visible from the

outside.

Unlike labels, annotations can't be used to select or identify

Kubernetes objects, so you can't use selectors to query them.

You could store this kind of metadata in external databases, but

that would be complicated. Instead, you can conveniently attach

annotations to the object itself. Once you access the object, you

can read the annotations.

Annotations can be helpful for a number of use cases, including:

•	 The Docker registry where a Pod's containers are stored

•	 The git repo from which a container is built

•	 Pointers to logging, monitoring, analytics, or audit repositories

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

The Fundamentals of Kubernetes

23

•	 Debugging-related information, such as name, version, and

build information

•	 System information, such as URLs of related objects from

other ecosystem components

•	 Rollout metadata, such as config or checkpoints

•	 Phone numbers or email addresses of people in charge of the

component's project

•	 The team's website URL

In the following example, a Pod configuration file has the informa-

tion on the git repo from which a container is built, as well as the

team manager's phone number:

apiVersion: v1

kind: Pod

metadata:

 name: annotations-test

 annotations:

 repo: "https://git.your-big-company.com.br/lms/

new-proj"

 phone: 800-555-1212

spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

You can also add annotations to an existing Pod with the

annotate command:

kubectl annotate pod annotations-test

phone=800-555-1212

To access Pod annotations, you can use:

kubectl describe pod your-pod-name

This will give you a full description of your Pod, or you can use

kubectl get pods command with the JSONPath template to

read just the annotation data from Pods:

kubectl get pods -o=jsonpath="{.items[*]['metadata.

annotations']}"

The Fundamentals of Kubernetes

24

Organizing your cluster,
organizing your journey

Namespaces, labels, and annotations are handy tools for keeping

your Kubernetes cluster organized and manageable.

A New Relic One dashboard showing Kubernetes information and a breakdown of Pods by

namespace

None of these tools are hard to use. As with most things in Kuber-

netes, the individual concepts are easy to learn—there are just a

lot of them to learn.

But now you're further along your Kubernetes journey because

you understand namespaces, labels, and annotations—and how

to use them.

The Fundamentals of Kubernetes

25

Chapter 5: Working With
Kubernetes Volumes

There are many advantages to using containers to run applica-

tions. However, ease of storage is certainly not one of them. To do

its job, a container must have a temporary file system. But when

a container shuts down, any changes made to its file system are

lost. A side effect of easily fungible containers is that they lack an

inherent concept of persistence.

While Docker has solved this issue with mount points from the

host, on Kubernetes you face more difficulties along the way.

As you’ve learned, the smallest deployable unit of computing in

Kubernetes is a Pod. Multiple instances of a Pod may be hosted

on multiple physical machines. Even worse, different containers

might run in the same Pod but access the same storage.

This chapter covers two tools Kubernetes offers to help solve

storage issues: volumes and persistent volumes. We’ll cover how

and why you’d use each.

About Kubernetes volumes

Volumes offer storage shared between all containers in a Pod.

This allows you to reliably use the same mounted file system with

multiple services running in the same Pod. This is, however, not

automatic. Containers that need to use a volume have to specify

which volume they want to use, and where to mount it in the con-

tainer’s file system.

Additionally, volumes come with a clearly defined life cycle. They

are bound to the life cycle of the Pod they belong to. As long as

the Pod is active, the volume is there, too. However, when you

restart the Pod, the volume gets reset. If this is not what you want,

you should either use persistent volumes (discussed in the next

section) or change your application's logic to accommodate this

behavior appropriately.

While Kubernetes cares about only the formal definition of a vol-

ume, you also need to have a real (physical) file system allocated

somewhere. This is where Kubernetes goes beyond what Docker

offers. While Docker only maps a path from the host to the con-

https://newrelic.com/platform/kubernetes/monitoring-guide
https://blog.newrelic.com/engineering/kubernetes-clusters-nodes-and-pods/
https://kubernetes.io/docs/concepts/storage/volumes/

The Fundamentals of Kubernetes

26

tainer, Kubernetes allows essentially anything as long as there is a

proper provider for the storage.

You could use cloud options such as Amazon Elastic Block Store

(EBS) or Microsoft Azure Blob Storage, or an open source solu-

tion such as Ceph. Using something as simple and generic as NFS

is possible, too. If you want to use something similar to Docker’s

mount path, you can fall back to the hostPath volume type.

So how do you create these volumes? You do so in the Pod

definition.

Working with volumes

For example, consider creating a new Pod called sharedvolu-

meexample using two containers—both just sleeping. Using the

volumes key, you can describe your volumes to be used within

the containers.

kind: Pod

apiVersion: v1

metadata:

 name: sharedvolumeexample

spec:

 containers:

 - name: c1

 image: centos:7

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/xchange"

 - name: c2

 image: centos:7

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/data"

 volumes:

 - name: xchange

 emptyDir: {}

To use a volume in a container, you need to specify volumeMounts

as shown above. The mountPath key describes the volume access

path.

To demonstrate how this shares the volume between the two

containers, let’s run a little test. First, you should create the Pod

from the spec (for example, sharedvolumeexample.yml):

https://aws.amazon.com/ebs/
https://aws.amazon.com/ebs/
https://azure.microsoft.com/en-us/services/storage/blobs/
https://ceph.io/

The Fundamentals of Kubernetes

27

kubectl apply -f sharedvolumeexample.yml

Then, you can access the terminal on the first container, c1, using

kubectl:

kubectl exec -it sharedvolumeexample -c c1 -- bash

Next, write some data into a file under the /tmp/xchange mount

point:

echo 'some data' > /tmp/xchange/file.txt

Let’s open another terminal, connecting to the container called

c2:

kubectl exec -it sharedvolumeexample -c c2 -- bash

The difference is that this time you read from its mounted storage

at /tmp/data:

cat /tmp/data/file.txt

This yields “some data,” as expected. Now you can remove the

Pod:

kubectl delete pod/sharedvolumeexample

Working with persistent volumes

When (regular) volumes don’t meet your needs, you can switch to

a persistent volume.

A persistent volume is a storage object that lives at the cluster

level. As a result, its life cycle isn’t tied to that of a single Pod, but

rather to the cluster itself. A persistent volume makes it possible

to share data among Pods.

One advantage of a persistent volume is that it can be shared not

only among containers of a single Pod, but also among multiple

Pods. This means persistent volumes can be scaled by expanding

their size. Reducing size, however, is not possible.

A persistent volume offers the same options for selecting the

physical provider as a regular volume. Provisioning, however, is

a bit different.

There are two ways to provision a persistent volume:

•	 Statically: You already allocated everything on the storage

side, so there’s nothing to be done. The physical storage behind

will always be the same.

•	 Dynamically: You might want to extend the available storage

space when the demand grows. The demand is settled via

a volume claim resource, which we’ll discuss in a bit. To

enable dynamic storage provisioning, you have to enable

the DefaultStorageClass admission controller on the

Kubernetes API server.

For growing systems with demand increase backed by scalable

resources, dynamic provisioning makes more sense. Otherwise,

we recommend staying with the simpler static provisioning.

https://kubernetes.io/docs/concepts/storage/persistent-volumes/

The Fundamentals of Kubernetes

28

Let’s try to create a persistent volume for a hostPath-backed

storage. Note that instead of configuring kind as Pod, you instead

configure as PersistentVolume:

kind: PersistentVolume

apiVersion: v1

metadata:

 name: persvolumeexample

 labels:

 type: local

spec:

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: "/tmp/data"

As with Pods, these resources are created using the kubectl tool:

kubectl apply -f persvolumeexample.yml

In this example, you created a new persistent volume named

persvolumeexample, with the maximum storage capacity of

10GB. As for the different access modes, you could specify Read-

WriteOnce, ReadOnlyMany, and ReadWriteMany, although not

all of these modes are available for every storage provider. For

instance, AWS EBS only supports ReadWriteOnce.

You can use the created persistent volume via another resource:

PersistentVolumeClaim. The claim ensures that there is enough

space available. This might fail even if, during dynamic provision-

ing, Kubernetes actively tries to allocate more space.

Let’s create a claim for provisioning 3GB:

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: myclaim-1

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 3Gi

The provisioning requires the use of kubectl:

kubectl apply -f myclaim-1.yml

When you run this command, Kubernetes looks for a persistent

volume that matches the claim. Using the claim is simple:

kind: Pod

apiVersion: v1

metadata:

The Fundamentals of Kubernetes

29

 name: volumeexample

spec:

 containers:

 - name: c1

 image: centos:7

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/xchange"

 - name: c2

 image: centos:7

 command:

 - "bin/bash"

 - "-c"

 - "sleep 10000"

 volumeMounts:

 - name: xchange

 mountPath: "/tmp/data"

 volumes:

 - name: xchange

 persistentVolumeClaim:

 claimName: myclaim-1

If you compare this example with the previous one, you’ll see that

only the volumes section has changed, nothing else.

The claim manages only a fraction of the volume. To free this frac-

tion, you’d have to delete the claim. The reclaim policy for a per-

sistent volume tells Kubernetes what to do with the volume after

it has been released of its claim. The options are Retain, Recycle

(deprecated in preference of dynamic provisioning), and Delete.

To set the reclaim policy, you need to define the persistent-

VolumeReclaimPolicy option in the spec section of the Per-

sistentVolume config. For instance, in the previous config this

would look like:

kind: PersistentVolume

apiVersion: v1

metadata:

 name: persvolumeexample

 labels:

 type: local

spec:

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 persistentVolumeReclaimPolicy: Retain

 hostPath:

 path: "/tmp/data"

The Fundamentals of Kubernetes

30

Choose your volume wisely

Both volumes and persistent volumes allow you to add data stor-

age that survives container restarts. While volumes are bound to

the life cycle of the Pod, persistent volumes can be defined inde-

pendently of a specific Pod. They can then be used in any Pod.

The one you choose depends on your needs. A volume is deleted

when the containing Pod shuts down, yet it is perfect when you

need to share data between containers running in a Pod.

Because persistent volumes outlive individual Pods, they’re ideal

when you have data that must survive Pod restarts or has to be

shared among Pods.

Both types of storage are easy to set up and use in a cluster.

Hopefully, the approaches we’ve documented help you gain some

control over your Kubernetes environment, so you can get busy

shipping more perfect software. When you’re ready for a deep

dive into Kubernetes monitoring, check out A Complete Introduc-

tion to Monitoring Kubernetes with New Relic.

Kubernetes Monitoring

Get complete observability into your clusters.

Learn More

https://newrelic.com/platform/kubernetes/monitoring-guide
https://newrelic.com/platform/kubernetes/monitoring-guide
https://newrelic.com/platform/kubernetes?utm_campaign=FY21-Q4-OPS-K8-AMER-EBOOK-AS-None-K8_PDF&utm_medium=AS&utm_source=EBOOK&utm_content=K8_PDF&fiscal_year=FY21&quarter=Q4>m=OPS&program=K8&ad_type=None&geo=AMER

	Introduction
	Chapter 1: How to Manage Cluster Capacity with Requests and Limits
	Chapter 2: How to Use Health Checks
	Chapter 3: How to Use Kubernetes Secrets
	Chapter 4: How to Organize Clusters
	Chapter 5: Working With Kubernetes Volumes

